Differential dynamics of spatial attention, position, and color coding within the parietofrontal network.

نویسندگان

  • Elaine Astrand
  • Guilhem Ibos
  • Jean-René Duhamel
  • Suliann Ben Hamed
چکیده

Despite an ever growing knowledge on how parietal and prefrontal neurons encode low-level spatial and color information or higher-level information, such as spatial attention, an understanding of how these cortical regions process neuronal information at the population level is still missing. A simple assumption would be that the function and temporal response profiles of these neuronal populations match that of its constituting individual cells. However, several recent studies suggest that this is not necessarily the case and that the single-cell approach overlooks dynamic changes in how information is distributed over the neuronal population. Here, we use a time-resolved population pattern analysis to explore how spatial position, spatial attention and color information are differentially encoded and maintained in the macaque monkey prefrontal (frontal eye fields) and parietal cortex (lateral intraparietal area). Overall, our work brings about three novel observations. First, we show that parietal and prefrontal populations operate in two distinct population regimens for the encoding of sensory and cognitive information: a stationary mode and a dynamic mode. Second, we show that the temporal dynamics of a heterogeneous neuronal population brings about complementary information to that of its functional subpopulations. Thus, both need to be investigated in parallel. Last, we show that identifying the neuronal configuration in which a neuronal population encodes given information can serve to reveal this same information in a different context. All together, this work challenges common views on neural coding in the parietofrontal network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A functional hierarchy within the parietofrontal network in stimulus selection and attention control.

Although we are confronted with an ever-changing environment, we do not have the capacity to analyze all incoming sensory information. Perception is selective and is guided both by salient events occurring in our visual field and by cognitive premises about what needs our attention. Although the lateral intraparietal area (LIP) and frontal eye field (FEF) are known to represent the position of ...

متن کامل

ظرفیت شبکه های حذفی تحت کدینگ فضایی شبکه

     We study the capacity of point-to-point erasure networks under a restricted form of network coding to which we refer as spatial network coding. In this form of coding, the nodes can not perform coding on successive packets which are received from one incoming link. The coding at a node is restricted to the packets received at the same time slot from different incoming links...

متن کامل

Improving Accuracy of DGPS Correction Prediction in Position Domain using Radial Basis Function Neural Network Trained by PSO Algorithm

Differential Global Positioning System (DGPS) provides differential corrections for a GPS receiver in order to improve the navigation solution accuracy. DGPS position signals are accurate, but very slow updates. Improving DGPS corrections prediction accuracy has received considerable attention in past decades. In this research work, the Neural Network (NN) based on the Gaussian Radial Basis Fun...

متن کامل

Parietofrontal circuits in goal-oriented behaviour.

Parietal and frontal cortical areas play important roles in the control of goal-oriented behaviour. This review examines how signal processing in the parietal and frontal eye fields is involved in coding and storing space, directing attention and processing the sensorimotor transformation for saccades. After a survey of the functional specialization of these areas in monkeys, we discuss homolog...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 35 7  شماره 

صفحات  -

تاریخ انتشار 2015